Nicholas Kincaid

Education

- 2018–Present **Cornell University**, Ithaca, NY *Ph.D. Student in Mechanical Engineering*, GPA: 4.17
 - 2014–2017 **Colorado School of Mines**, Golden, CO *B.S. in Mechanical Engineering*, GPA: 3.98

Research Experience

2023 National Renewable Energy Lab

Graduate Student Intern | Golden, CO

- Collaborated with High-Performance Algorithms and Complex Fluids group as part of the DOE Office of Science Graduate Student Research program
- Developed error control methods for machine learning models for more robust simulations

2018–Present Pepiot Research Group

NSF Graduate Research Fellow | Cornell University, Ithaca, NY

- $\circ~$ Generated reduced-order kinetic models for reacting flow systems
- $\circ~$ Applied machine learning techniques to create data-driven models of chemical kinetics
- $\circ~$ Performed CFD simulations on high-performance computing resources

2017–2018 National Renewable Energy Lab

Thermal Systems Engineering Intern | Golden, CO

- $\circ~$ Developed optical models for CSP systems using ray-tracing methodology
- $\circ\,$ Assisted in the evaluation and optimization of a novel linear Fresnel CSP system

2017 Norwich Solar Technologies

Concentrated Solar Power R&D Intern | White River Junction, VT

- Developed thermal models of CSP receivers using CFD simulations
- $\circ~$ Performed system modeling to analyze PV and CSP plant efficiency

2016–2017 Advanced Multiscale Building Energy Research Group

Undergraduate Research Assistant | Colorado School of Mines, Golden, CO

- $\circ~$ Developed code to couple finite difference conduction equations with green roof model
- $\circ~$ Evaluated coupled green roof model and validated against experimental data

Publications

- A. Bellemans, **N. Kincaid**, N. Deak, P. Pepiot, and F. Bisetti. P-DRGEP: a novel methodology for the reduction of kinetics mechanisms for plasma-assisted combustion applications. *Proceedings of the Combustion Institute*, 2020
- J. McTigue, D. Wendt, K. Kitz, J. Gunderson, **N. Kincaid**, and G. Zhu. Assessing geothermal/solar hybridization Integrating a solar thermal topping cycle into a geothermal bottoming cycle with energy storage. *Applied Thermal Engineering*, 2020

- N. Kincaid, G. Mungas, N. Kramer, and G. Zhu. Sensitivity analysis on optical performance of a novel linear Fresnel concentrating solar power collector. *Solar Energy*, 2019
- J. Mctigue, J. Castro, G. Mungas, J. King, N. Kramer, D. Wendt, K. Kitz, J. Gunderson, C. Turchi, **N. Kincaid**, and G. Zhu. Techno-economic Assessment of Geothermal Power Plants Hybridized with Solar Heat and Thermal Storage. *44th Annual Stanford Geothermal Workshop*, 2019
- S. Vera, C. Pinto, P. Tabares-Velasco, G. Molina, G. Flamant, W. Bustamante, A. Pianella, and **N. Kincaid**. Analysis and comparison of two vegetative roof heat and mass transfer models in three different climates. *Energy and Buildings*, 2019
- N. Kincaid, G. Mungas, N. Kramer, M. Wagner, and G. Zhu. A Performance Comparison of Three Concentrating Solar Power Collector Designs in Linear Fresnel, Parabolic Trough, and Power Tower. *Applied Energy*, 2018
- Q. Ding, S. Barna, K. Jacobs, A. Choubal, G. Mensing, Z. Zhang, K. Yamada, N.Kincaid, G. Zhu, R. Tirawat, T. Wendelin, L. Guo, P. Ferreira, and K. Toussaint. Feasibility Analysis of Nanostructured Planar Focusing Collectors for Concentrating Solar Power Applications. ACS Applied Energy Materials, 2018

Presentations

- N. Kincaid*, A. Newale, and P. Pepiot. DRGEP Autoencoders: physics-based datadriven low-dimensional manifolds for capturing complex chemistry. Presentation at the 13th U.S. National Combustion Meeting, 2023
- A. Bellemans*, N. Kincaid*, N. Deak, P. Pepiot, and F. Bisetti. P-DRGEP: a novel methodology for the reduction of kinetics mechanisms for plasma-assisted combustion applications. Presentation at the 38th International Symposium on Combustion, 2020
- **N. Kincaid**^{*}, A. Newale, and P. Pepiot. Investigation of principal component methodologies to capture low-temperature chemistry in LES-PDF. Presentation at the *12th U.S. National Combustion Meeting*, 2020
- N. Kincaid, G. Zhu*, G. Mungas, N. Kramer. Sensitivity Analysis of Optical Performance on a Novel Linear Fresnel Concentrating Solar Power Collector, Presentation at *SolarPACES*, 2018

N. Kincaid^{*}, P. Tabares. A Green Roof Heat and Mass Transfer Model Coupled with a Finite Difference Method for Building Energy Simulations, Poster Session at the *Graduate Research and Discovery Symposium*. Colorado School of Mines, 2017.

Awards

- 2022 Office of Science Graduate Student Research Fellowship, Cornell University
- 2019 NSF Graduate Research Fellowship, Cornell University
- 2019 Sibley Prize for Excellence in Graduate Teaching Assistance, Cornell University
- 2017 **1**st **Place CECS Poster Session**, *Graduate Research and Discovery Symposium*, *Colorado School of Mines*
- 2016 ASHRAE Rocky Mountain Chapter Student Scholarship, Colorado School of Mines

Selected Graduate Coursework

- CHEME 6800 Computational Optimization
 - CS 5786 Machine Learning for Data Science
 - MAE 6010 Foundations of Fluid Mechanics I
 - MAE 6230 Computational Fluid Dynamics
 - MAE 6310 Turbulence and Turbulent Flows
 - MAE 6330 Multiphase Flow Dynamics
 - MAE 6430 Computational Combustion
 - PHYS 7680 Computational Physics

Other Experience

- 2015–2017 Center for Academic Services and Advising
 Academic Tutor | Colorado School of Mines, Golden, CO
 Tutored fellow classmates and assisted with concepts from a variety of courses
 - 2016 Generation Teach Summer Academy Teaching Fellow | Boston, MA
 Taught a general engineering course to 6th grade students
- 2013-2014 West Pharmaceuticals Analytical Chemist Intern | Exton, PA
- 2011–2013 Newport City Public Works Department Work Crew | Newport, VT
- 2007–2014 Kincaid's Heating and Cooling Assistant Service Technician | Newport, VT

Teaching

2022 Fluids and Heat Transfer Laboratory, Teaching Assistant, Cornell University 2020–Present Rock Climbing, Instructor, Cornell University

2019–2020	Telemark Skiing, Instructor, Cornell University
2019	Intermediate Fluid Dynamics, Teaching Assistant, Cornell University
	Technical skills
Languages Other	Python, Fortran, C/C++, MATLAB Fluent, COMSOL, Cantera, PyTorch, TensorFlow, Git, LAT _E X
	Extracurricular Activities
2019–2022	Cornell Energy Systems Club, Director of Alumni Relations, Cornell University
2018–2020	Sibley Grads in Mechanical Engineering, Social Committee, Cornell University
2015–2017	CSM Triathlon Club, Sponsorship Coordinator, Colorado School of Mines